The same structural characteristics that produce a lovely echo when music is performed can make ordinary speech nearly unintelligible. Music is an important part of most church services, but the congregation should also be able to clearly hear and understand spoken words without straining. Acoustic sound panels for churches clarify and focus tonal vibrations, making them easier for human ears to process.
Although some European Gothic cathedrals are famous for their signature echoes, there is a distinct line separating reverberation from garbled, irritating noise. Echoes occur because individual waves repeatedly bounce back and forth between ceilings and walls. While some building plans include acoustic accuracy, many houses of worship today exist in structures originally intended for other uses.
Even without the benefit of modern computer analysis, there have been several methods historically used to correct the problem. Some included the addition of ash to clay pots located at strategic points withing a room. They were moved about, and burnt material was added or removed to dampen specific reverberations. Support pillars that dominated some buildings were specifically altered, and stone blocks specially sized to inhibit echo.
In modern buildings, solutions vary from adding thick carpeting in specific spaces, or using software to create individual and changeable reverberation shapes based on other acoustically famous interiors. Both methods work up to a point, but cannot completely overcome structural obstacles that are part of the original building plans. Many structures benefit most from flat baffles in front of walls or on ceilings.
Rather than actually eliminating or blocking certain frequencies, they absorb the excess that confuses the ear. Most construction is fairly simple. There is an inner layer of dampening material surrounded by a rigid frame, and the exterior is covered with a variety of decorative materials. Fillings are commonly made of fiberglass, insulating foam, or newer, less environmentally hazardous materials.
Dimensions are dictated by the amount of distortion or echo. Some may be as large as an entire wall or ceiling, while others only cover a four square foot area. Regardless of size, each allows waves to pass through rather than bouncing off a hard surface, and any returning echo is re-absorbed. This method uses the same principles as music studios to reproduce vocal and instrumental tones accurately.
Far from appearing to be an industrial or high-tech intrusion, these structures easily blend with most modern church decors. They can mirror the patterns and colors of existing stained glass, or can tie a room together by adopting patterns or colors on existing walls and ceilings. While a plain baffle is not particularly attractive, in many cases they end up looking like a part of the intended interior design.
It is possible to precisely arrange them in the best possible positions using digital analysis, but diffusion and absorption is often best measured by the most effective tool of all, human hearing. Once the best configuration has been discovered, units can be positioned permanently. Instead of preventing certain frequency ranges or cutting down the volume, they make both speech and music sound clean and clear.
Although some European Gothic cathedrals are famous for their signature echoes, there is a distinct line separating reverberation from garbled, irritating noise. Echoes occur because individual waves repeatedly bounce back and forth between ceilings and walls. While some building plans include acoustic accuracy, many houses of worship today exist in structures originally intended for other uses.
Even without the benefit of modern computer analysis, there have been several methods historically used to correct the problem. Some included the addition of ash to clay pots located at strategic points withing a room. They were moved about, and burnt material was added or removed to dampen specific reverberations. Support pillars that dominated some buildings were specifically altered, and stone blocks specially sized to inhibit echo.
In modern buildings, solutions vary from adding thick carpeting in specific spaces, or using software to create individual and changeable reverberation shapes based on other acoustically famous interiors. Both methods work up to a point, but cannot completely overcome structural obstacles that are part of the original building plans. Many structures benefit most from flat baffles in front of walls or on ceilings.
Rather than actually eliminating or blocking certain frequencies, they absorb the excess that confuses the ear. Most construction is fairly simple. There is an inner layer of dampening material surrounded by a rigid frame, and the exterior is covered with a variety of decorative materials. Fillings are commonly made of fiberglass, insulating foam, or newer, less environmentally hazardous materials.
Dimensions are dictated by the amount of distortion or echo. Some may be as large as an entire wall or ceiling, while others only cover a four square foot area. Regardless of size, each allows waves to pass through rather than bouncing off a hard surface, and any returning echo is re-absorbed. This method uses the same principles as music studios to reproduce vocal and instrumental tones accurately.
Far from appearing to be an industrial or high-tech intrusion, these structures easily blend with most modern church decors. They can mirror the patterns and colors of existing stained glass, or can tie a room together by adopting patterns or colors on existing walls and ceilings. While a plain baffle is not particularly attractive, in many cases they end up looking like a part of the intended interior design.
It is possible to precisely arrange them in the best possible positions using digital analysis, but diffusion and absorption is often best measured by the most effective tool of all, human hearing. Once the best configuration has been discovered, units can be positioned permanently. Instead of preventing certain frequency ranges or cutting down the volume, they make both speech and music sound clean and clear.
0 nhận xét:
Đăng nhận xét